Checking domain
Jump to navigation
Jump to search
Within checking theory of the Minimalist Program, the checking domain of a head A consists of everything adjoined to it, and of its specifier(s). Formally, the checking domain of a head A is defined as the minimal residue of A. The residue of A is its domain minus its complement domain.
Example
In the following structure (with a head H adjoined to X), the checking domain of X consists of UP, ZP, WP and H. The checking domain of H is UP, ZP and WP.
XP1
/\
/ \
UP XP2
/\
/ \
ZP1 X'
/\ /\
/ \ / \
WP ZP2 X1 YP
/\
/ \
H X2
Link
Checking domain in Utrecht Lexicon of Linguistics
Reference
- Chomsky, Noam A. 1995. The Minimalist program. Cambridge, MA: MIT Press.